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A B S T R A C T   

In this study, we investigate the feasibility of using the Classification and Regression Tree (CART) algorithm to 
estimate soil water content (SWC) using commonly available meteorological parameters. We trained and vali
dated CART models using data collected in a grassland terrain in northern Taiwan throughout the year of 2018, 
with the goal of providing precise information for agricultural irrigation and flood risk assessment. Results 
indicate the effectiveness of CART in SWC estimation, with error levels acceptable for agricultural purposes. The 
mean absolute error is less than 4% (v/v) for 53 out of the total 60 models in the 12-fold Time-Series Cross- 
Validation for SWC at depths of 10, 30, 50, 70, and 100 cm. Furthermore, the effectiveness of meteorological 
parameters in different sets of time shifting and parameter types are assessed. Our findings reveal that the 
responsiveness of SWC to parameters derived from precipitation varies with soil depth and season, with SWC 
dynamics in response to precipitation being more pronounced in shallower layers (≤50 cm) compared to deeper 
layers (≥70 cm). The influence of precipitation-derived and non-precipitation parameters on SWC dynamics is 
manifested in their distinct feature-importance characteristics in a CART model. This study highlights the 
importance of understanding characteristics of rainfall and underlying hydrological dynamics, such as evapo
transpiration and soil texture, in order to make accurate SWC predictions using CART. Since CART serves as the 
basis for a variety of top-performing machines like random forest and gradient-boosted trees, the discoveries 
from this study can also help estimate SWC with these advanced algorithms. Overall, the results of this study 
provide practical guidance for refining machine-learning based SWC estimations, contributing to more effective 
agricultural water management and irrigation strategies.   

1. Introduction 

Developing methods for accurately estimating soil water content 
(SWC) in the vadose/root zone and understanding its dynamics is crucial 
for various applications. Previous research addressing the topics of the 
influence of interaction between soil-water-plant on the environment 
(Maroufpoor et al., 2019), precision agriculture (Sobayo et al., 2018), 
and urban green space water management (Garg et al., 2020) has 
reviewed or highlighted the importance of understanding the dynamics 

of SWC and related hydraulic parameters for maintaining these systems. 
SWC estimates affect hydrological, biological, and meteorological pro
cesses as they control the partitioning of water and energy between the 
land surface and atmosphere. Moreover, precise irrigation based on 
accurately estimated SWC maintains crop growth while saving water 
resources (Peters et al., 2013; Angelaki et al., 2023). This similar concept 
applies to urban green infrastructure with different types of vegetation 
and soil, planting purposes, and irrigation management. 

SWC can be directly measured via the gravimetric method, which 
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involves drying soil samples and measuring the weight loss (Reynolds, 
1970). Another method is the nuclear resonance method, which mea
sures the interaction of water molecules with a magnetic field (Hen
dricks et al., 1999; Dawson et al., 2017; Shen et al., 2019). While these 
approaches can provide highly accurate estimations of SWC, their high 
costs make them impractical for in-situ deployment in most scenarios 
mentioned previously. In the context of field instrumentation, a variety 
of indirect approaches have been developed to make continuous SWC 
monitoring in fields viable. These include resistivity methods (Brunet 
et al., 2010), tension methods (Bittelli, 2010; Shekhar et al., 2017), 
dielectric methods (Toková et al., 2019; He et al., 2021; Robinson et al., 
2003), and fiber optic sensing (Cosenza, 2016; Aldaba et al., 2018; Sun 
et al., 2022). Due to economic and deployment reasons, in-situ SWC 
monitoring is generally spatially sparse. Therefore, physically based 
numerical models and data-driven models are required on one hand to 
fill gaps in SWC measurement instrumentation. On the other hand, these 
models can be utilized to predict SWC and provide support for early 
responses in water management activities. 

Conventionally, physically based numerical models allow the simu
lation of infiltration; for example, the current state-of-the-art models 
HYDRUS and SWAP are capable of simulating the movement of solutes 
in the soil-plant-atmospheric system (Simunek et al., 2016; Kroes et al., 
2017; Pinheiro et al., 2019) by including partial differential equations 
that describe the flow of water in unsaturated porous media. Regional 
pedotransfer functions (PTFs) are also widely used to identify the pa
rameters required in hydrological models; they are empirical statistical 
models used for estimating soil water-related properties using more 
readily available measurements (Wösten et al., 1999,2001; Pachepsky 
and van Genuchten, 2011; Patil and Singh, 2016). However, numerical 
models require accurate spatial-temporal initial conditions of parame
ters such as hydraulic conductivity, soil texture, inflow and outflow 
conditions; obtaining high-quality data for these parameters is not easy 
in most agricultural scenarios. Empirical statistical models such as PTFs, 
on the other hand, generally require a substantial amount of soil data to 
develop the function. In recent years, machine learning (ML) techniques 
have gained popularity for estimating and understanding the dynamics 
of soil water content, as well as correlated soil properties. Compared to 
numerical simulation, ML methods are attractive for their flexibility in 
prediction, as they generally require much less detailed and compre
hensive hydraulic parameters. In addition, ML models can be trained on 
more diverse data sources without the need for explicit boundary con
ditions and initial conditions. Considering model performances, ML 
models can produce comparable and robust results to SWAP- or 
HYDRUS-like models, but require significantly fewer computational 
resources for estimating SWC in precision agriculture, environmental 
monitoring, or hydrological modeling (Li et al., 2020; Leonarduzzi et al., 
2022; Yang and Mei, 2022; Lei et al., 2023). 

ML models are data-driven and intrinsically lack physics-based and 
mechanistic understanding, as compared to traditional numerical 
models. In the context of applying ML models for soil water estimation 
or prediction, the purpose of training a model is to learn implicit pat
terns and relationships from observed data. In practice, the trained 
models can use various relational parameters such as meteorological 
parameters (e.g., Cai et al., 2019; Yu et al., 2020, 2021; An and Zhao, 
2021; Huang et al., 2021; Tramblay and Quintana Seguí, 2022), remote 
sensing indices or imagery data (e.g., Liu et al., 2018; Adab et al., 2020; 
Araya et al., 2020; Greifeneder et al., 2021; Nguyen et al., 2022), hy
draulic parameters and soil properties other than SWC (e.g., Leij et al., 
2022; Lei et al., 2023), and solely SWC observations (e.g., Datta and 
Faroughi, 2023) to derive SWC values for SWC interpolation, nowcast, 
or forecast. 

In our survey of studies using ML methods for SWC estimation within 
the past 5 years at the time of writing, we categorized the most popular 
ML methods into the following three categories: Decision Tree-based 
models (DT) (e.g., Liu et al., 2018; Greifeneder et al., 2021; Nguyen 
et al., 2022; Oliveira et al., 2021; Tramblay and Quintana Seguí, 2022), 

Support Vector Machines (SVM) (e.g., Huang et al., 2021), and Artificial 
Neural Networks (ANN) or “deep learning” methods (e.g., Cai et al., 
2019; Yu et al., 2020, 2021; An and Zhao, 2021; Leij et al., 2022; Datta 
and Faroughi, 2023). Some studies aim to compare the performance of 
different methods from these three categories in specific scenarios of 
SWC estimation (e.g., Adab et al., 2020; Araya et al., 2020; Greifeneder 
et al., 2021; Oliveira et al., 2021). The top-performing models are often 
sophisticated DT or ANN models, demonstrating the effectiveness of DT 
and ANN methods in estimating SWC for purposes such as accurate 
predictions or fine interpolation of SWC in various climatic and 
geographic conditions. 

For example, Araya et al. (2020) shows that in estimating SWC of 
depth 0–4 cm using high-resolution multispectral imagery, terrain at
tributes, and climate covariates, the boosted regression tree algorithm 
yielded the most accurate results compared to ANN and SVM methods. 
In estimating SWC of depths 10 and 20 cm in farmland of three sites in 
Beijing, China, using meteorological parameters as input features, a 
deep learning regression network model with two hidden layers out
performs both other ANN models and a SVM, demonstrating good data 
fitting and generalization capabilities (Cai et al., 2019). The works of 
Greifeneder et al. (2021) and Nguyen et al. (2022) both adopted DT 
methods for incorporating remote sensing data to provide a 
high-resolution SWC map; both of the results show that boosted trees 
can provide accurate SWC estimation better than Random Forest (RF) 
and SVM. In SWC prediction for corn production purposes, Yu et al. 
(2021) proposes a hybrid CNN-GRU model that integrates the strong 
feature expression ability of Conventional Neural Network (CNN) with 
the time series memory ability of Gated Recurrent Unit (GRU). It out
performed individual CNN and GRU models in terms of prediction ac
curacy and convergence rate, with improved accuracy at greater soil 
depths that could be a significant reference for agricultural irrigation 
applications. In the study of Tramblay and Quintana Seguí (2022), the 
RF model is capable of providing SWC estimations of comparable quality 
but greater robustness compared to regional-specific pedotransfer 
functions in the context of drought monitoring. Adab et al. (2020) 
compares the performance of RF, SVM, ANN, and a regression model in 
the task of estimating SWC at depths from 10 to 100 cm. The results 
show that RF outperforms others in a variety of performance metrics, 
such as Mean Absolute Error (MAE) and Nash-Sutcliffe efficiency. In 
Oliveira et al. (2021), RF, SVM, average neural network, and weighted 
k-nearest neighbor were used to model the spatiotemporal dynamics of 
SWC. The results show that RF was found not only to be the most ac
curate algorithm but also the most suitable one for predicting the 
spatiotemporal variability of SWC in an Atlantic forest remnant. Datta 
and Faroughi (2023) investigates long short-term memory (LSTM) 
models with SWC itself as input feature to forecast SWC at 10 and 30 cm 
depths up to one month in advance. The results show that a multihead 
LSTM (which is composed of several LSTM models) significantly out
performs individual LSTM models. Yu et al. (2020) proposed a 
ResBiLSTM model that combines residual network and bidirectional 
LSTM, taking gridded meteorological and SWC data as input to predict 
SWC at four depths from 20 to 50 cm in three growing stages of corn. The 
results show ResBiLSTM can achieve a good fit in different growing 
stages and significantly outperform SVM, RF, and deep learning 
regression network. These studies show great capabilities of DT and 
ANN approaches in a variety of scenarios of SWC estimation but also 
indicate that the increase in performance mostly came at the cost of 
higher model complexity. 

In the scope of general machine learning in recent years, Classifica
tion and Regression Tree (CART) is one of the most popular DT algo
rithms for its flexibility (Jena and Dehuri, 2020). It is particularly 
excellent in handling heterogeneous datasets that contain both cate
gorical and numerical data, which is still generally challenging for 
ANN-based models (Kadra et al., 2021). Because of its simplicity, CART 
commonly serves as the basis of the top-performing DT methods. It is 
often chosen as the weak learner for ensemble learning, such as random 
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forests, and gradient boosting machines, such as XGBoost (Chen and 
Guestrin, 2016), which have dominated Kaggle competitions in recent 
years (Bentéjac et al., 2021). In a comprehensive review of ML tech
niques used in soil science (Padarian et al., 2020), ANN models are 
considered highly performing in terms of predictive accuracy but are 
usually labeled as “black-box” models due to their complex nature. On 
the other hand, CART allows assessing the importance of variables and is 
especially preferred when the available dataset is small. 

Precipitation is usually considered to have the most direct impact on 
SWC in the vadose zone, especially in regions with frequent rainfall like 
Taiwan. Persistent rainfall fills the near-surface soil and saturates it. Few 
studies using ML methods to estimate SWC have addressed how the 
saturation of soil and changes in evapotranspiration mechanism affect 
the model performance and stability. In this study, we use CART to es
timate SWC for agricultural purposes. CART is chosen for its simplicity, 
intrinsic feature selection ability, and extensibility to more sophisticated 
tree algorithms like RF and boosted trees. The main objective of this 
study is to investigate the feasibility of using CART for estimating SWC 
and to assess the time-lag effects of precipitation-derived and non- 
precipitation meteorological parameters. CART has been shown to be 
a powerful algorithm for feature selection, automatically identifying the 
most important features during the tree induction process, as reported in 
previous studies (Questier et al., 2005; Grabczewski and Jankowski, 
2005; Zhou et al., 2021). By leveraging this intrinsic ability for feature 
optimization, we were able to incorporate all meteorological parameters 
of interest, including air temperature, relative humidity, solar radiation, 
air pressure, and precipitation, with data observed up to the past 192 h 
for a proof-of–concept task of SWC estimation. Our dataset consisted of 
SWC measurements at five different depths and meteorological variables 
collected throughout the year 2018 in a grassland terrain site in northern 
Taiwan. We trained and validated our CART models using this dataset to 
estimate SWC one hour ahead, with the ultimate goal of providing 
precise information for agricultural irrigation and flood risk assessment. 

The findings of this study indicate the effectiveness of using CART for 
estimating SWC in a subtropical grassland terrain, with error levels 
acceptable for agricultural purposes. The CART model was found to 
adapt distinct strategies for estimating SWC at depths of ≤50 cm and 
≥70 cm, revealing a seasonal change in the infiltration mechanism. By 
validating our models throughout the different seasons of the year, we 
were able to explore the underlying hydrological dynamics of our study 
area and determine the key factors for a successful CART model. 

Our findings also highlight the importance of having a general un
derstanding of the characteristics of rainfall, evapotranspiration, and 
soil texture before applying ML methods to estimate SWC. For instance, 
if it is estimated that the low SWC may limit vegetation growth after 3 
days, it is necessary to confirm in advance the irrigation water source 
and whether it is sufficient. This information is especially helpful for 
vegetations without readily supplied irrigation channels. However, new 
SWC observation program is just getting started and long-duration local 
SWC data is rarely found, which explains why this study uses a grassland 
with data available for the whole year as an example. SWC estimation 
gradually gains attentions recently in Taiwan due to frequently occurred 
droughts and floods events. The Central Weather Administration of 
Taiwan is also making efforts to improve the accuracy of SWC estimation 
in few-kilometer scale. It manifests the novelty and value of this study as 
a small-scale counterpart. Considering Taiwan’s special geographical 
and hydrological characteristics, estimating SWC of a grassland in 
Taiwan also help verify the applicability of the machine learning method 
proposed in previous studies. 

2. Data 

The study area is located at the Atmospheric and Hydrological Ob
servatory (National Central University, NCU, 2024) site, which has a 

34-meter square grassland terrain with a vegetation height of 5–20 cm. 
The study area is relatively flat with no tall buildings or obstacles within 
100 m of the site. 

The meteorological data used in this study were obtained from 
various instruments, including precipitation (Ota keiki seisakusho/OW- 
34-BP), air temperature (Vaisala HUMICAP/HMP 155), relative hu
midity (Vaisala HUMICAP/HMP 155), wind speed (RM Young/05103), 
atmospheric pressure (Setra/278), and solar radiation (shortwave ra
diation) (Eppley/Precision Spectral Pyranometer). The SWC was 
measured using Sentek/EnviroSCAN, which was placed at 10 cm, 30 cm, 
50 cm, 70 cm, and 100 cm below the surface. 

In Fig. 1, the blue circle represents the location of the SWC sensor, 
while the yellow triangle represents a rain gauge and the orange square 
represents a 10-meter tower where additional instruments were placed, 
including a pressure gauge at 1 m, a temperature-hygrometer meter at 
2 m, a pyranometer at 3 m, and an anemorumbograph at 10 m. The 
distance between the SWC and rainfall measurements is about 10 m, and 
the distance between the SWC and the meteorological variables is also 
about 10 m. The location and spacing devices are chosen mainly to avoid 
interfering with each other and the other existing devices unrelated to 
this study. Also, the soil texture of each layer is homogeneous, so the 
location of the soil moisture measurement is irrelevant to the estimated 
1-dimensional SWC in this study. Moreover, the data during 2018 was 
selected because of the amount and quality of data. 

The main wet season in the Taoyuan area occurs during the summer 
months (June to September), with an average annual rainfall of 2300 
mm, an annual average temperature of around 22 degrees, an average 
summer temperature of 27 degrees, and an average winter temperature 
of 13 degrees (Li and Tseng, 2024). 

The data used in this study cover the entire year of 2018, including 
any data deficiencies or missing data. The completeness of the data is 
shown in Fig. 2 (a). The original data, collected at a temporal resolution 
of 10 min, is down-sampled to hourly data by taking the last data point 
of each hour for modeling purposes. It is important to note that the raw 
data for precipitation represents the accumulated precipitation in 10- 
minute intervals, and accumulated precipitation for intervals from 1 h 
to 3 days is calculated by summing the raw data within the interval, with 
the time stamp of the derived data matching that of the last point of the 
raw data in the same interval. Any missing data is filled by using linear 
interpolation. Fig. 3 and 4 show the time series of meteorological data 
excluding precipitation, and the corresponding SWC at different depths 
along with precipitation data, respectively for the year 2018. The data 
used in this study were collected from the following three sources: the 
Surface Hydrology Laboratory (Surface Hydrology Lab. of NCU, 2024b) 
provides data on SWC, air temperature, and precipitation; the Cloud and 
Aerosol Laboratory (Aerosol and Cloud Laboratory of NCU, 2024) pro
vides supplementary data on relative humidity and atmospheric pres
sure; and the Atmospheric Boundary Layer and Air Pollution Laboratory 
(Planetary Boundary Layer and Air Pollution Lab. of NCU, 2024) pro
vides solar radiation data. 

Fig. 1. Aerial view of the NCU Atmospheric and Hydrological Observatory site 
(Surface Hydrology Lab. of NCU, 2024a). 
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Fig. 2. (a) Missing data in the dataset used in this study. (b) Subsets of training-testing data for cross validation in this study.  

Fig. 3. The time-series data of 2018 for air temperature, humidity, atmospheric pressure, solar radiation, and wind speed.  
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The correlation between meteorological data and SWC at the five 
depths is displayed as a correlation matrix in Fig. 5, with the value in 
each cell being the standard (Pearson) correlation coefficient. It shows 
that air temperature negatively correlates with SWC at all depth ( ~ −

0.3); air pressure positively correlates with SWC at all depths ( ~ + 0.3); 
and the accumulated precipitation strongly positively correlates with 
SWC at all depths for the time interval of accumulation > 0.5 day(s). For 
other features, the correlation coefficient is mostly less than ± 0.2. 

Fig. 4. The soil water content from 10 cm to 100 cm below the soil surface (black line of different styles and blue line) and the rainfall (blue bars).  

Fig. 5. Correlation matrix of the dataset features (corresponding to Fig. 2 (a)).  
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3. Methods 

3.1. CART algorithm 

Tree-based methods are a type of ML algorithm that involves con
structing a decision tree to make predictions or decisions. In a decision 
tree, the root node represents the entire dataset, and the child nodes 
represent subgroups of the data based on specific conditions. In this 
study, we under the framework of MLJ (Blaom et al., 2020), apply CART 
algorithm provided by “DecisionTree.jl” (Sadeghi et al., 2022) for esti
mating SWC. CART is a popular decision tree algorithm that was first 
proposed by Breiman in 1984 (Breiman, 2017); it is a supervised ML 
method that can be used for both classification and regression tasks. In a 
regression task, such as SWC estimation, the goal is to predict a 
continuous numerical value; the algorithm works by repeatedly splitting 
the data based on the feature and threshold, where each split creates 
binary branches according to the criterion of minimizing the sum of 
squared error (SSE) (Hastie et al., 2009). 

Considering a group of data with N observations, where each 
observation consists of p inputs and one response, the minimization of 
SSE in a split is written in the following equation: 

min
j,s

[min
cL

∑

xi∈RL(j,s)

(yi − cL)
2
+ min

cR

∑

xi∈RR(j,s)

(yi − cR)
2
]. (1)  

In this equation, xi = (x(1)
i , x(2)

i ,…, x(p)
i ) denotes the variable for the 

input features, and yi denotes the variable of the target feature as the 
response, with subscript i = 1, 2, …, N indicating the ith observation. R 

denotes a subgroup of dataset at a certain split, with suffixed R or L 
denoting the “right” or “left” branch respectively. cL or cR denotes the 
average response in the subgroup of the left or right branch respectively. 
In the minimization of the average responses and the sum of squares in 
the equation, the feature j of threshold s that results in the split of the 
most distinctive subgroups of observations are obtained. 

As pointed out in Hastie et al. (2009) and Carrizosa et al. (2021), the 
global minimum of SSE is computationally infeasible, and CART is a 
practical approach that builds the solution incrementally by making the 
locally optimal choice. Although CART often brings high computational 
efficiency and provides reasonably good solutions, it is important to note 
that CART in general does not guarantee the globally optimal partition 
in terms of SSE due to the lack of considering the entire solution space or 
future consequences of choices. 

3.2. Time series-to-supervised dataset construction 

In our task of SWC estimation, the full list of the time series data 
applied as the input or target features for CART is demonstrated in  
Table 1. In this table, meteorological parameters (air temperature, 
relative humidity, solar radiation, wind speed, air pressure, precipita
tion at the site) and the hour of the day were used for deriving input 
features; each SWC at a certain depth is the target feature as the response 
to the inputs. For the purpose of conciseness, the notation NP is used to 
refer to meteorological parameters that are not precipitation, P repre
sents raw data of precipitation (accumulated in 10 min), and AP stands 
for accumulated precipitation derived from P throughout this document. 

Table 1 
Basic descriptions for all features.  

variable mean min median max unit 

hour  11.5  0  11.5  23 hour 
windspeed_CWB  2.46664  0.0  2.3  9.4 m∕s 
solar_radiation  163.532  0.0  3.467  1259.0 W∕m2 

humidity_CWB  77.8678  25.0  79.0  98.0946 % RH(a) 

pressure_CWB  998.503  977.6  1000.43  1016.0 hPa 
air_temperature  22.5717  5.9393  23.0683  35.648 ∘C 
precipitation  0.0330226  0.0  0.0  9.0 mm 
precipitation_1hr  0.16955  0.0  0.0  25.0 mm 
precipitation_12hr  1.9041  0.0  0.0  68.7 mm 
precipitation_1d  3.78865  0.0  0.0  113.5 mm 
precipitation_2d  7.54727  0.0  0.2  178.0 mm 
precipitation_3d  11.3072  0.0  1.4  226.0 mm 
SWC_10cm  15.0258  6.145  15.08  38.71 % V/V(b) 

SWC_30cm  28.3645  21.5  28.57  44.0 % V/V 
SWC_50cm  29.4681  22.78  29.47  46.35 % V/V 
SWC_70cm  31.1118  23.4  30.57  49.21 % V/V 
SWC_100cm  20.8358  14.35  20.02  41.79 % V/V  

a Relative Humidity 
b Volumetric percentage 

Table 2 
Input features and their time-shifted variants of different sets. NP denotes parameters that are not precipitation or parameters derived from precipitation; P denotes the 
raw data of observed precipitation; and AP denotes the derived data from P. The suffix CWB denotes the data observed by Central Weather Administration of Taiwan.  

Group tag/Feature name Time shift (lag) of input features   

baseline longer denser 

NP 

hour 0 0 0 
windspeed_CWB 

0,− 12, − 24, − 36, − 48 0,− 12, − 24, − 36, − 48, − 60, − 72, − 84, − 96 0, − 6,− 12,− 18,− 24,− 30,− 36,− 42,− 48 

solar_radiation 
air_temperature 
pressure_CWB 
humidity_CWB 

P precipitation 

AP 

precipitation_1hr 
precipitation_12hr 
precipitation_1d 
precipitation_2d 
precipitation_3d  
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For the AP parameters, the period over which the amount of precipita
tion accumulates is indicated by a suffix in the variable name. The suffix 
is an integer value followed by “hr” (for hours) or “d” (for days). For 
example, the variable “precipitation_1hr” represents the accumulated 
precipitation over a period of 1 h. The hour of the day can provide rough 
information about the position of the sun, as it has been applied as an 
input feature to estimate SWC in previous studies, such as Pekel (2020). 
Therefore, we also investigate how this variable affects the estimation of 
SWC in our study. 

To study the relationship between current SWC and earlier infor
mation from meteorological parameters, all input features except for 
“hour” were time-shifted variables, and the actual number of input 
features is multiplied by the number of time shifts of each parameter 
accordingly. Table 2 displays the three time-shift sets used in the study: 
the “baseline” set, which involves information up to − 48 h with a step of 
− 12 h; the “longer” set, which involves information up to − 96 h with 
the same time-shift step; and the “denser” set, which has the same 
earliest available information as the “baseline” set, but twice the density 
of past information with a step of − 6 h. 

The target features are listed in Table 3. It should be noted that the 
five target features do not simultaneously respond to the input dataset; 
instead, a model is always trained and validated with only one target 
feature. 

3.3. Model validation 

To assess the validity of a set of trained models, we use mean abso
lute error (MAE) between the values given by the trained model 
(referred to as predicted values) and the real SWC observations (referred 
to as actual values). The data is split into 12 subsets for cross-validation, 
namely 12-fold Time-Series Cross-Validation (TSCV). Each subset is then 
partitioned into a training set used to train the tree model, and a testing 
set used to validate the performance of the model. For each fold i in 
TSCV, the model is trained on the folds from 1 to i − 1 using ground truth 
data, and evaluated on the testing fold i by comparing the predicted SWC 
to the actual SWC. The overall performance of a model is determined by 
averaging its performance across the 12 folds. The 12 partitions have the 
same length of testing data but have varying lengths of training data, as 
demonstrated in Fig. 2 (b). 

The main difference between TSCV and ordinary cross-validation 
(CV) is that TSCV preserves the temporal order of the data. This 
means that in TSCV, the training and testing set always contain 
consecutive data points, and the testing fold always occurs after the 
training fold. The choice of TSCV in our study is important because it 
ensures that the model is evaluated on data observed after the end of 
training, which is more representative of how the model will be used in a 
realistic deployment scenario. 

3.4. Assessment of feature importance 

CART works by greedily splitting the data into subsets based on the 
features that most reduce the impurity of the nodes, as introduced 
previously in Sec. 3.1. Due to this nature, CART provides two inherent 
metrics for assessing the importance of input features: Total Number of 
Node Splits (TNNS) and Total Decrease in Node Impurity (TDNI). TNNS 
refers to the total number of splits made by a feature in a tree model; it 
measures how often a feature was used to split the data during the tree 
construction process. TDNI represents the sum of impurity decrease over 

Table 3 
List of target features.  

Target features 

Abbrev. Feature name Time shift 

SWC 

soil_water_content_10cm  

+1 
soil_water_content_30cm 
soil_water_content_50cm 
soil_water_content_70cm 
soil_water_content_100cm  

Fig. 6. MAE in the 12-fold TSCV of ten sets of parameter selection for estimating SWC at five depths. The magnitude of MAE is represented by the colors or sizes of 
circles, with solid circles representing results from “baseline” time shifting, and hollow circles on top of the solid circles representing results from “longer” time 
shifting. The parameter sets are labeled along the x, where “with all” denotes the use of the complete table of input features as listed in Table 2, “w/o” denotes without 
a certain parameter based on the “with all” set, and “only AP & P” denotes the use of only features with group tags AP and P. 
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all nodes in the tree resulting from a feature splitting the training data; it 
measures how much the error a feature could reduce. In a CART model 
for regression in “DecisionTree.jl”, the impurity decrease at the split of 
node k is defined as: 

Δimpurity = SSEk − SSER − SSEL. (2)  

In this equation, SSEk, SSEL, and SSER represent the SSE of target values 
at node k, the left child node of node k, and the right child node 
respectively. 

It should be highlighted that SSE is proportional to the number of 
data points when Mean Squared Error (MSE) is the same. Thus, the 
decrease in impurity at a node of lower level (near the root) is generally 
larger than that at a node of a higher level (near the leaves). 

CART assumes that the behavior of the target variable can be 
modeled through a series of decisions based on a set of input features 
using a hierarchy of binary branches. If a feature is irrelevant to the 
target, it will not be able to reduce the impurity of the nodes. Based on 
this assumption, features with low TDNI are considered to have minimal 
effects in making predictions. In comparison, a feature with a high TNNS 
is not necessarily effective, since TNNS does not provide information 
about the level in the hierarchy structure of a tree where a split occurs, 
which is critical in making predictions. In this study, TDNI is used to 
assess the impact of missing data and the importance of NP and AP & P 
parameters in the 12-fold TSCV to understand their role in dry and wet 
seasons. On the other hand, TNNS values for the same set of parameters 
are also calculated but serve as supplementary information. 

4. Result and discussion 

4.1. Analysis of individual parameters and time shifting effects 

To study how meteorological information from earlier pasts and in
dividual parameters within them take effect in SWC estimation, we 
employ three types of time shifting: “baseline”, “longer”, and “denser”, 
as introduced in Sec. 3. For each set of time shifting, we examine the 
effect of individual precipitation (P) and non-precipitation (NP) pa
rameters, as well as the synthetic effect of accumulated precipitation 

(AP) parameters, by considering ten different sets of parameter selec
tions. Referring to the complete table of input features listed in Table 2, 
the ten sets of parameter selection are as follows: (1) without hour; (2) 
without wind speed; (3) without solar radiation; (4) without humidity; (5) 
without pressure; (6) without air temperature; (7) without precipitation; 
(8) without AP parameters; (9) with all parameters; and (10) with only AP 
and P parameters. The loss in MAE in the 12-fold TSCV of ten sets of 
parameter selection for three types of time shifting is demonstrated in  
Fig. 6 and 7. Both figures display the same results for the “baseline”, 
where the MAE of cross-validation for each case is represented by the 
size of colored solid circles placed on the grid. On top of the “baseline”, 
the results with “longer” and “denser” time shifting are separately 
plotted in Fig. 6 and 7, with the MAE represented by the size of hollow 
circles at the corresponding grid positions for comparison. 

In Fig. 6, MAE of the cases with “longer” time shifting (represented 
by hollow circles) is smaller compared to the “baseline” cases (repre
sented by solid colored circles) for almost every depth and parameter 
selection set. The comprehensive improvement in model performance 
for almost all “longer” cases indicates that meteorological information 
earlier than t = − 48 h could be helpful in estimating SWC at these 
depths. On the other hand, MAE of “denser” cases are almost the same as 
those of “baseline”, as demonstrated in Fig. 7, suggesting that tempo
rarily more detailed information than the 12-hour resolution may not be 
essential for SWC estimation. 

Looking at either Fig. 6 or Fig. 7 for the “baseline” results, the loss in 
MAE of parameter selection sets numbered from (1) to (7) is very close to 
that of set (9) for every depth, indicating that discarding a single NP or P 
parameter has minimal effect on the model’s loss. This implies that the 
effect of the absence of a single parameter can be easily compensated for 
by the contributions of other parameters. On the other hand, the MAE of 
cases in set (8) is significantly larger than those of set (9), especially for 
SWC estimation at depths ≤30 cm. This indicates that AP parameters 
play a very critical role in influencing SWC at shallow depths, which is 
an unsurprising result that reflects the high correlations between AP 
parameters and SWC of all depths as displayed in Fig. 5. In set (10), using 
only AP and P parameters, the MAE for every depth is larger than that of 
set (9), indicating that the summary contribution of NP parameters is 

Fig. 7. The same as Fig. 6 but with hollow circles on top of the solid circles representing results from “denser” time shifting.  
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crucial for good SWC estimates. Furthermore, according to the results of 
set (8) and set (10), AP parameters are especially critical for estimating 
SWC at shallow depths (≤30 cm), and NP parameters are especially 
important for estimating SWC at deeper depths (≥70 cm). 

4.2. Assessing the usefulness of earlier past data and observations on the 
influence of soil texture and evapotranspiration 

In order to further examine to what extent the meteorological 

Fig. 8. Learning curve for elongated time lags, where models were trained and validated using all input features in Table 2.  

Fig. 9. Learning curve for elongated time lags, where models were trained and validated using only one-hour accumulative precipitation.  
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information from earlier past could be useful, we incrementally added 
more time-shifted data as input features. We assessed model perfor
mance using the same 12-fold TSCV, and the results are demonstrated in  
Fig. 8. Fig. 8 illustrates the relationship between the time shift and the 
fitting loss in MAE for estimating SWC at five different depths using all 
the parameters listed in Table 2 with time shifting up to 192 h. Fig. 8 
shows that the inclusion of meteorological information with time 
shifting up to 96 h (i.e., the time shift set “longer” in Table 2) is quite 
sufficient for SWC estimation at all depths. It is close to the longest 
rainfall duration of 89 h observed in 2018, if defining the separation of 
rainfall events as dry periods longer than 12 h. 

We observed that cumulatively including information of earlier pasts 
leads to notable improvements in the estimation of SWC at depths ≤50 
cm, but provides little improvement in the estimation of SWC at depths 
≥70 cm. Supported by evidence related to soil texture and observations 
made during both a prolonged drying process in summer and a separate 
wetting event in January, we attribute this variation in estimation ac
curacy to the influence of the evapotranspiration (ET) mechanism. 
Considering the duration of dry days and the amounts of ET, the influ
ence of the meteorological variables and thus ET at the study site can 
reach only depths ≤50 cm in most of the time in the year. Take an 
extreme long-drying summer case which is most likely to affect SWC at 
depth larger than 70 cm as an example, little change in SWC at the depth 
of 100 cm but large change at the depth of 10 cm is observed after drying 
for 96 h in late July with solar radiation up to 1100 W∕m2 (Fig. 10). By 
using only “precipitation_1hr” to estimate SWC, Fig. 9 further suggests 
that the information of precipitation earlier than t = − 48 h is not helpful 
in estimating SWC at depths ≥70 cm, but on the other hand brings 

notable improvements in estimating SWC at depths ≤50 cm. The results 
presented in Fig. 8 and Fig. 9 appear to contradict the intuitive expec
tation that the influence of meteorological phenomena on SWC at 
greater depths would take effect at a more delayed time. However, as 
detailed in the following paragraph, the discrepancy can be attributed to 
the specific soil texture of the site. 

The rock core samples obtained from the site are demonstrated in  
Fig. 12. Because the top (10 cm) soil layer contains relatively fine grains 
and the mid-layer (30 − 70 cm) contains coarse soil particles in which 
water flows easily based on rock core samples, water infiltrates through 
the preferential-flow path to the deep layer (100 cm) faster than ex
pected. The wetting and beginning of the drying process are demon
strated in Fig. 11 with 82-hour 229.5 mm rain water infiltrating into soil 
in a relatively dry condition. Although SWC at 10 cm responds first to 
the precipitation, soil at 100 cm and 70 cm become saturated earlier 
than the shallow layer. Then, the water accumulated so that 50 cm and 
30 cm become saturated as well because the soil at 100 cm seems to be 
an aquitard in which water is difficult to pass through or be held. 
Moreover, the SWC at 100 cm also declines faster than SWC at 10 cm 
after the rainfall intensity decreases to 1 mm per 10 min near the end of 
the event. The early response and slow recession of the top layer provide 
evidence that precipitation at earlier time steps, up to 144 h in Fig. 9, 
influences SWC more at 10 cm than at 100 cm. On the other hand, SWC 
at 30 − 70 cm shows incremental changes in between corresponding to 
the core samples. The durations of the saturated periods for SWC at 
different depths between the rising and recession curves depend on both 
the rainfall duration and the soil texture and vary from event to event. 
This 82-hour 229.5 mm event has the largest rainfall amount and is 

Fig. 10. SWC at five depths v.s. precipitation: a case event of an extreme long-drying summer.  
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much longer than all except one rainfall event observed in 2018, which 
shows the rare situation that the significant and persistent changes in 
SWC at 100 cm is most likely close to that at 10 cm. For smaller rainfall 
or shorter rainfall duration, the 100 cm SWC has only little change in a 
limited time period, which explains that in almost all rainfall events only 
rainfall within 48 h significantly improves the estimation of SWC at 100 
cm. 

4.3. Insights into the role of AP and NP parameters in 12-fold TSCV 

The fitting results of the 12-fold TSCV for all depths of SWC mea
surements with the time shift set “longer” are displayed in Fig. 13, and 
the corresponding performance estimated by MAE for each fold is 

displayed in Fig. 14. The “nth-fold” marked in the figures or mentioned 
in the article, directly refers to the time period of testing data of the nth 
fold validation. In Fig. 14, there is a clear increase in the loss of the 3rd 
fold validation for all models, and a drastic increase in loss of the 8th 
fold validation for models targeting SWC of depths ≥70 cm. In all other 
cases, the MAE is less than 4% (v/v). Referring to Fig. 13, discrepancies 
between the predicted and actual values during the 3rd and 8th fold are 
clearly observable. We attribute the misfit in the 3rd fold to the inability 
of CART to extrapolate outside the range of the training data. In CART, 
the leaf nodes are always summarized from the training data, and this 
nature makes CART intrinsically unable to provide predictions outside 
the range of the training dataset. From the second half of the 2nd fold to 
the end of the 3rd fold, the SWC continuously decreased and reached 
historically low levels that were not present in the training data for the 
3rd fold. In addition, when comparing the MAE of the 2nd fold valida
tion, we observed exceptionally worse performances for models target
ing SWC depths ≥30 cm. This observation aligns with the fact that the 
lowest SWC in the 3rd fold validation for depths ≥30 cm is much lower 
than the minimum SWC ever reached before. For the misfit in the 8th 
fold validation, we speculate that a much lower responsiveness of SWC 
to non-intensive precipitation at deeper depths is the major cause. It can 
be clearly observed in the interval from the 3rd fold to the 7th fold that, 
as demonstrated in Fig. 13, the SWC at shallow depths (≤30 cm) re
sponds promptly to precipitation, while the SWC at greater depths 
(≥70 cm) shows little to no response to precipitation. 

To understand the role of precipitation in the 12-fold TSCV, feature 
importance of NP, P, and AP parameters are assessed for each fold using 
TDNI and TNNS as metrics, as demonstrated in Fig. 15. Both TDNI and 

Fig. 11. SWC at five depths v.s. precipitation: an 82-hour 229.5 mm rainfall event.  

Fig. 12. Rock core samples obtained from the study area. Layer (a): fine- 
grained, yellow-brown with red-brown streaks clay soil; layer (b): fine- 
grained, yellow-brown clay soil. This figure is modified from (Tseng, 2019). 
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Fig. 13. Time-series of soil water content predictions in the testing phases of the 12 folds (scattered points), referencing actual observations (soild line); with results 
of soil water content of different depths separately demonstrated in each subplot. The models are trained using all features in Table 2 of time-shift set “longer”. 
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TNNS reflect the relevance between an input feature and the target 
variable but have different connotations, as explained in Sec. 3.4. In this 
study, the fundamental assumption and rule that the CART operates on 
is that the behavior of underground SWC can be solved through a series 
of binary decisions based on meteorological parameters. Based on this 
assumption, we use TDNI and TNNS to assess the responsiveness of SWC 
to the collection of NP parameters and to the collection of AP & P pa
rameters. To make the results comparable, TDNI and TNNS are 
normalized for each CART model. It should be noted that the TDNI and 
TNNS for the ith fold are derived from the model trained using data from 
the beginning of 2018 to the end of the (i− 1)th fold. Therefore, the TDNI 
and TNNS for the ith fold reflect the relevance of the input and target 
features observed up to but not including the time of the ith fold. In 
addition, the feature importance measured by TDNI and TNNS is rela
tive, and the sum of both TDNI and TNNS for all input features is always 
1. As a consequence, the summary effect of NP parameters in terms of 
TDNI or TNNS is always complementary to the summary effect of AP & P 
parameters in each fold. In Fig. 15, the TDNI of AP & P parameters for 
the first three folds is high for SWC at depths ≤50 cm and starts lowering 
after the 3rd fold until the 8th fold. For SWC at depths ≥70 cm, the 
lowering starts at the 2nd fold and reaches a significantly lower level 
around the 7th fold compared to the shallowest SWC. After the 8th fold, 
a rebound of the TDNI of AP & P parameters can be observed for SWC at 
every depth, and the TDNI remains stable from the 9th to the 12th fold. 
The TDNI pattern of AP & P parameters in the 12-fold TSCV indicates the 
responsiveness of SWC to precipitation between the 3rd and 7th fold, 
becoming lower for all depths and significantly lower for SWC at deeper 
depths (≥70 cm). The rebound of TDNI for AP & P parameters at 9th fold 

is especially strong for SWC at the depth of 100 cm, indicating that the 
responsiveness of SWC at the deepest depth becomes prominent again 
during the 8th fold. The corresponding time of the data included in the 
training dataset that instigate these behaviors of TDNI of AP & P pa
rameters coincides with the time in the year of 2018 from April to July 
when the rainfall events become less intensive, and the time of August 
when heavy rainfall events consecutively occurred. On the other hand, 
the variance of TNNS across different folds is trivial, and the TNNS of NP 
parameters is significantly higher than that of AP & P parameters for 
SWC at every depth and the model of every fold. For NP parameters, 
high TNNS with low TDNI indicates that the portion of decision nodes 
made by NP parameters in a tree is virtually the same, but these nodes 
are located at higher levels (near the leaf). This suggests that even 
though AP and P are the most crucial factors in affecting underground 
SWC during seasons with intensive rainfall, such as the time from mid- 
August to September, and the time from January to February, NP pa
rameters can contribute to a finer prediction. Besides, the good perfor
mance of models in validating the 4th to 7th folds indicates that NP 
parameters are effective in providing accurate estimations of SWC 
during seasons with only non-intensive rainfall. Considering the sea
sonal variation of TDNI of SWC at deeper depths and the seasonal 
variation in ET mechanisms inferred by the two specific drying and 
wetting cases, as well as the rock core samples obtained at the site, we 
attribute the exceptionally large MAE of the 8th fold TSCV for SWC at 
deeper depths (≥70 cm) to the sudden change in the responsiveness 
characteristics of SWC to precipitation caused by the intensive rainfall 
events occurring during the time of the 8th fold. 

Fig. 14. Loss in MAE across 12 folds for all SWC depths, referring the fitting goodness of the results demonstrated in Fig. 13.  
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4.4. Assessing the impact of missing data 

From January to March, there is a continuous time span of more than 
two months where humidity, pressure, and wind speed observations are 
missing, as shown in Fig. 2 (a). To understand how these missing pa
rameters may affect predictions and validation results, we calculate 
TDNI and TNNS for the models during the 12-fold TSCV, as shown in  
Fig. 16. The results show that in the first three folds, the TDNI of hu
midity, pressure, and wind speed for almost all models is very low. This 
indicates that even when the input data for these parameters are inferred 
values using linear interpolation, they cannot result in substantial de
viation in predicted SWC in the 1st and 2nd fold validation. The very low 
TDNI of the model in the 3rd fold validation further guarantees that the 
misfit of this fold is very unlikely due to the handling of missing data. 

4.5. Seasonal variations in SWC mechanisms and practical implications 
for agriculture in Taiwan 

In the 12-fold TSCV for the “baseline” case with all parameters, 
despite three models targeting SWC of depths 50, 70, 100 cm in the 3rd 
fold and four models targeting SWC of depths 70, 100 cm in the 8th and 
9th fold, the remaining 53 models perform well in the validation, with 
MAE of less than 4 % (v/v), as demonstrated in Fig. 14. Considering that 
root depth is usually similar to the height of the vegetation, soil within 
20 cm depth represented by SWC at 10 cm is the most of use for agri
cultural irrigation. With the three-day rainfall forecast more reliable 
than the weekly forecast in Taiwan, the CART model helps to produce 
hourly estimations of SWC within three days in practice for collecting 
water beforehand in case of possible drought events. Notice that the 
effects of error in rainfall forecasts require further studies. Moreover, 
water shortage within the tolerable range 15 − 20 % of the total water 
demand barely influences crop production. Overestimating SWC by 4 % 

for SWC at 10 cm results in an 8 mm or around 7.2 tons of water deficit 
per 0.1 hectare farmland. 7.2 tons is 7.2 ‰ of water demand for rice per 
0.1 hectare, while the water demands of soybeans and wheat are 12 and 1

10 
of that for rice, respectively. It indicates that the continuous estimation 
error of more than 20 days may start to influence rice production, which 
manifests the value of the estimated SWC information in this study. 
However, crops may require specific water during certain growth pe
riods. Therefore, the crop type and growth period will affect the toler
able accumulated days of SWC estimation error, which needs to be 
further clarified by future studies. 

The misfit of the 8th-fold validation and the responsiveness of SWC 
inferred by TDNI can also be explained from hydrological aspects. The 
observed SWC at shallow layers (≤50 cm) decreases to lower values in 
April than in previous months because of smaller rainfall (6 − 22.5 mm), 
less frequent rainfall events, and larger average solar radiation, 
providing more spaces in the soil due to ET for rainwater detention. 
Barely any hydrological response is found for 70 cm until mid-June and 
for 100 cm until mid-July because of small rainfall amounts and small 
hydraulic conductivity caused by low SWC, unlike high SWC in January. 
SWC at each layer is thus close to the wilting points before the long- 
lasting event in mid-August with large rainfall amounts. In contrast, in 
the other interval containing the mid-August event from the 8th to the 
9th fold, the SWC at all depths shows a clear response to precipitation 
although the antecedent water content before the mid-August event is 
low. It can be attributed to the rainfall characteristics, including the 
number, the rainfall amounts, the rainfall duration, and the rainfall in
tensity of the rainfall events. The consecutive intense rainfall events 
increase SWC from a very dry condition to saturation, and the phe
nomenon unseen in the other folds of the data results in the misfitting 
tree model for the 8th fold. The hydraulic conductivity increases rapidly 
as well during the wetting process, which increases the transmissivity of 
water to the deep soil layer and therefore positively feedbacks to 

Fig. 15. The sum of feature importance by categories as denoted in the legend.  
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accelerate the increase of SWC to saturation. 
Considering all the results above, it is implied that the mechanism of 

SWC response at this site changes seasonally due to changes in the 
rainfall and ET characteristics. In most drying and wetting processes, the 
influence of the rainfall and ET only reaches soil depths ≤50 cm, which 
may be partly due to the fine grains in the topsoil layer. It also explains 
why the model performs better for SWC ≤50 cm (Fig. 13), because more 
drying-wetting events are experienced in the shallow layers than in the 
deep layers and the model has more events to learn. From the results in 
Taoyuan with 2300 mm rainfall and 1030 mm evaporating-pan records 
annually shown in this study, it is suggested to have a general idea of the 
characteristics of rainfall, ET, and soil texture before applying CART to 
estimate SWC. In this case, the model’s performance is explainable and 
precise information can be provided for agricultural irrigation or even 
flood early warning. 

5. Conclusion 

In this study, we assess the capability of CART in estimating SWC in a 
site of grassland terrain in northern Taiwan, and inspect the effective
ness of meteorological parameters in sets of different time shifting and 
parameter type to provide guidance for refining SWC estimations in 
agricultural settings. During the assessment of the time shifting effect, 
we found that including earlier meteorological information as input 
features can bring substantial reduction of error. However, using 
temporally more detailed information than the 12-hour resolution may 
not be necessary for hourly SWC estimation. When analyzing the 
learning curve of models that incrementally included data observed 
from earlier periods as input features, we observed two distinct patterns 
for SWC depths ≤50 cm and depths ≥70 cm. This difference aligns with 
the high water retention ability of the topsoil and the presence of 

Fig. 16. The sum of feature importance by categories as denoted in the legend.  
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preferential flow in the mid-layer, which were inferred from soil char
acteristics of the rock core samples obtained at the site and SWC ob
servations during a drying process in summer. In the performance 
analysis across 10 parameter selection sets, we found that for the depth 
of 10 cm, CART relied more on AP & P parameters, while for the depth of 
100 cm, it relied more on NP parameters to deal with the inconsistency 
in the sensitivity of SWC to precipitation across dry and wet seasons. 
During the feature importance analysis, the variation of TDNI values of 
NP parameters and AP & P parameters revealed changes in the 
responsiveness of SWC to precipitation throughout the year. This ex
plains the distinct strategies that the CART model developed for esti
mating SWC at the shallowest depth (10 cm) and the deepest depth 
(100 cm) at the study site. Furthermore, the consistently higher TNNS 
values associated with NP parameters suggest the efficacy of NP pa
rameters in finer adjustments in making predictions. Additionally, the 
CART algorithm exhibits resilience in the face of superfluous input 
meteorological data up to 192 h before the current time, as demon
strated in the time shifting effect analysis. It also exhibited robustness 
against missing data, as shown in Sec. 4.4. 

The mechanism of SWC response at this site changes seasonally, and 
thus influences the performance of the CART model. More specifically, 
the response of SWC in shallow layers is frequent during both rainy and 
dry seasons. On the other hand, saturation of soil at a depth larger than 
70 cm, which occurs earlier than that of soil at a depth smaller than 50 
cm because of the fine grains in the topsoil layer, only occurs for long- 
duration large-intensity precipitation in the rainy season. Overall, 
these results not only provide hints about the near-surface soil structure 
of the study area but also have implications for better estimation of SWC, 
which is not exclusively for the CART model. 

CART is the commonly chosen weak learner for state-of-the-art DT 
methods. The methodology and insights on feature selection for SWC 
estimation presented in this study can be easily applied when using these 
advanced DT techniques. Furthermore, since CART is naturally 
compatible with heterogeneous datasets, this study can serve as the basis 
for future works that apply CART-based DT algorithms using meteoro
logical data in combination with other variables such as land use cate
gory. However, it should be noted, as encountered and discussed in this 
study, that CART has limitations in its ability to extrapolate outside the 
training range. Additionally, the fundamental assumption of CART in 
our application of SWC estimation, as detailed in Sec. 3, is reasonable 
but has not been thoroughly examined. Hence, caution with these lim
itations must be exercised in conducting future works based on this 
study. 
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D.A., Horton, R., Bristow, K., Dyck, M., Filipović, V., Noborio, K., Wu, Q., Jin, H., 
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